第157节 (第2/2页)
整,快步来到徐云身边: “王公子,手稿尽数在此。” 徐云朝他道了声谢,找了个光线不错的位置,核验起了手稿。 老贾等人则很识趣的禁起了声,纵使心中有不少话想说,此时也被硬生生的憋了回去。 韩公廉给出的手稿大概有十厘米厚,每张纸上都密密麻麻的写了大量的数字符号。 手稿不但记录了整个数算过程,同时还充当了备忘录或者日记,记下了不少推演日常。 “方外外半之一矩,环而共盘得成三数,两矩共长二十有五,是谓积矩……” “透镜外矩至青,线长五又四分之三,又以阿拉伯数字为记,即5.75……” “透镜内复矩至川,线长三又五分之一,又以阿拉伯数字为记,即3.20……” “中轴午角下刻……次轴亥角上刻……共计组数一千七百三十七,刘益、熊涣之分领一至三百八十八首算……” “周三径一,除之开方……” “设未知为天元……开多个小孔透光,可得某多变数值,甚怪……甚怪……复若光线亦可正切耶?” “今日子容又至,劝我等尽早食寝,却因兴之所至,与我等同做数算至深夜,并告知我等‘微粒学说’,茅塞顿开……” “复若光线亦是微物,则其偏折之态则亦可以切较数算,次日汇算五千三百余组矩刻,所得一恒数,约在……” “一又四分之一到一又三之一之间……” 看到这儿。 徐云不由用力咬着后槽牙,尽量避免自己失态。 但纵使如此,他的手指依旧在隐隐颤抖。 原因无他,盖因老贾等人…… 这次真牛逼大发了。 众所周知。 傅里叶光学中,用球面波和平面波可以表示任何复杂的波。 复杂函数=一个直流量0级傅里叶项+傅里叶高阶项。 也就是说。 球面波和平面波是波动方程的基本解。 而其中平面波的复振幅可以表示为aexp[jk(xcosα+ycosβ+zcosγ)]。 cosα^2+cosβ^2+cosγ^2=1,这就是平面波的方向余弦。 以此为基础,就可以得到基尔霍夫衍射理论衍射理论的倾斜因子k(θ)。 当然了。 更深层次的原因则是因为向前运动的波,前上的每个点都可以看做是一个产生次波波源。 各个子波波源波面的包洛面,就是下一个新的波面。 θ就是位置方向与波面法线的夹角,涉及到了光的波动性。 非常简单,也很好理解。 总而言之。 如果把描述球面子波相干叠加的基尔霍夫理论称为衍射的球面波理论。 那么角谱理论,便是衍射的平面波理论。 当初基尔霍夫计算的方式是通过向量进行的,数学工具除了积分外还有格林公式等等。 那时候的数学领域已经毕竟趋近完善了,至少不会动不动就说数学危机,或者数学大厦坍塌啥的。 而老贾等人的演算方式,则要“笨”很多: 是通过类似穷举对比的三角方式锁定了区间,接着利用最原始的贾宪三角二项式进行的汇算。 至于这个算法的核心思路嘛…… 当然是老苏提出的微观理论了。 按照老贾等人手稿中的说法,她们虽然没有认识到光的波粒二象性,但却产生了分割光的念头: 他们把偏折区域分成了无数个细微的部分,截取其中五六节重点偏折的区域,用去推算切线。 这种方式理论上是可行的。
请记住本站永久域名
地址1→wodesimi.com
地址2→simishuwu.com
地址3→simishuwu.github.io
邮箱地址→simishuwu.com@gmail.com